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SUMMARY

Transcriptomic profiling experiments that aim to the identification of responsive genes in specific bio-
logical conditions are commonly set up under defined experimental designs that try to assess the effects
of factors and their interactions on gene expression. Data from these controlled experiments, however,
may also contain sources of unwanted noise that can distort the signal under study, affect the residuals
of applied statistical models, and hamper data analysis. Commonly, normalization methods are applied to
transcriptomics data to remove technical artifacts, but these are normally based on general assumptions
of transcript distribution and greatly ignore both the characteristics of the experiment under consideration
and the coordinative nature of gene expression. In this paper, we propose a novel methodology, ARSyN,
for the preprocessing of microarray data that takes into account these 2 last aspects. By combining analysis
of variance (ANOVA) modeling of gene expression values and multivariate analysis of estimated effects,
the method identifies the nonstructured part of the signal associated to the experimental factors (the noise
within the signal) and the structured variation of the ANOVA errors (the signal of the noise). By removing
these noise fractions from the original data, we create a filtered data set that is rich in the information
of interest and includes only the random noise required for inferential analysis. In this work, we focus
on multifactorial time course microarray (MTCM) experiments with 2 factors: one quantitative such as
time or dosage and the other qualitative, as tissue, strain, or treatment. However, the method can be used
in other situations such as experiments with only one factor or more complex designs with more than 2
factors. The filtered data obtained after applying ARSyN can be further analyzed with the appropriate sta-
tistical technique to obtain the biological information required. To evaluate the performance of the filtering
strategy, we have applied different statistical approaches for MTCM analysis to several real and simulated
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data sets, studying also the efficiency of these techniques. By comparing the results obtained with the orig-
inal and ARSyN filtered data and also with other filtering techniques, we can conclude that the proposed
method increases the statistical power to detect biological signals, especially in cases where there are high
levels of structural noise. Software for ARSyN is freely available at http://www.ua.es/personal/mj.nueda.

Keywords: Analysis of variance; Batch effect; Microarrays; Principal components analysis; Systematic noise.

1. INTRODUCTION

Time course microarray (TCM) experiments analyze time-dependent transcriptional changes along one
or more series of data. The TCM design is employed when the dynamics of gene expression changes are
to be studied as a response to a drug treatment, for its association with a genetic background or simply
as a consequence of development or aging. If a second factor, such as diversity of treatments, strains, or
environment, is present in the study, we are dealing with a multifactorial time course microarray (MTCM)
experiment. Examples of such controlled multifactorial experiments can be found in the fields of toxicol-
ogy (Heijne and others, 2003), agronomy (Brumós and others, 2009), biomedicine (Agudo and others,
2008), and ecology (Svendsen and others, 2008), to cite just a few. Although recent advances in se-
quencing technologies have created alternatives to microarrays for transcriptome profiling, the relatively
high costs of sequencing platforms rule out their use in complex transcriptomics experiments such as the
MTCM in which a large number of conditions and samples are required. In these circumstances, microar-
rays continue to be the preferred option to address genome-wide gene expression analysis. Typically, in
MTCM designs, time constitutes one factor, a variable of quantitative nature, while the other factors are
either quantitative or qualitative (dosis/level, treatment, strain, etc.). Statistical analysis of this kind of data
is more complicated than that of simple control–cases studies. In MTCM, not only significant changes at
different factor levels and interactions are sought but also the identification of patterns of transcriptional
regulation is frequently pursued. Several methodologies for the analysis of TCM have been proposed so
far (Conesa and others, 2006; Tai and Speed, 2006; Storey and others, 2005) that apply different statis-
tical strategies for the modeling of time-dependent gene expression and the identification of significant
changes.

One of the aspects that has received most attention in methodological studies of microarray data analy-
sis is the treatment of noise. Although microarrays have greatly improved technical quality and reproduc-
tion over the years, microarray data are still highly noise prone and are affected by random and systematic
sources of error that obscure the transcriptional signal. The first step in the analysis of microarray data
is usually normalization, whose aim is to adjust data from different arrays to a common baseline and
distribution. This data treatment addresses sources of technical variation such as hybridization efficiency,
starting messenger RNA concentrations, or different physical properties of labeling molecules. Normal-
ization methods have been established over the last decade (Do and Choi, 2006). However, not all sources
of technical noise are removed by normalization. This is due to the fact that most of the current normaliza-
tion methods are designed to center and scale the data assuming general invariability for all observations
and ignoring the particular sample hybridized in each array (Yang and others, 2002). When exploring
normalized microarray data using common clustering techniques, it is still not infrequent to observe ar-
tifacts associated to identifiable factors such as the array type, the lab, or the date of execution generally
referred to as “batch effects.” Moreover, other types of systematic biases that are not as traceable as the
batch effects might also be embedded in the data. All these elements represent sources of structured noise
that reduce statistical power when assessing differential expression.

Batch effects are present in many data sets, and this can seriously hinder statistical analysis. This
technical problem has been recently reviewed within the framework of the MAQC-II Project that studied
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the quality of microarray data for their application as a molecular prediction tool (MAQC-Consortium,
2010). This project resulted in an extensive evaluation of the batch effect and of the existing batch-removal
strategies (Luo and others, 2010). Some methodologies for removing batch effects require large batch
sizes, such as singular value decomposition (Alter and others, 2000) and distance weighted discrimination
(Benito and others, 2004). Empirical Bayes methods have been claimed to be more flexible and robust to
outliers since the batch bias is considered common across all genes in each batch (Johnson and others,
2007). A requirement for the application of all these strategies is the previous identification of the batches,
generally understood as the group of samples affected by the same noise level, and this is not always
possible. When systematic noise is associated with an array or spatial effects, the experiment design may
be the key for correcting this noise (Leek and Storey, 2007). Moreover, the co-regulation mechanism that
underlies gene expression implies that transcriptomics data have an inherent correlation structure. Taking
this covariance structure into account is, likewise, an effective way to enhance data analysis.

In this paper, we propose a novel strategy named ARSyN (ASCA [ANOVA simultaneous component
analysis] removal of systematic noise). ARSyN is based on the ASCA model developed by Smilde and
others (2005) to remove structural noise from microarray data sets. ASCA combines analysis of variance
(ANOVA) and principal components analysis (PCA) to analyze multifactorial omics data sets. So far,
ASCA has been used for exploratory analysis (Jansen and others, 2005; Brumós and others, 2009) and
for the identification of responsive genes in transcriptomics (Nueda and others, 2007). In the present work,
we take advantage of the data decomposition provided by the ASCA model to develop a novel statistical
framework for the preprocessing of microarray data. In brief, ARSyN uses the PCAs of the ANOVA
parameters and residuals in the ASCA model to identify and separate noise from signal in microarray data.
After this decomposition, the data elements of interest are joined back together to reconstruct a filtered
gene expression matrix which is free of structural biases. The filtered matrix has 2 main advantages:

1. Extracts the relevant gene expression variation related to the controlled variables in the experimental
design. This is obtained from the main principal components (PCs) of the ANOVA parameters.

2. Is free of structural noise that can be associated to batch effects or to other nontraceable sources of
variation. This is identified in the main PCs of the residuals of the ANOVA model.

Although ARSyN relies on the ASCA model, it is a different methodology in scope and statistical
realization. While ASCA has been used for descriptive analysis and for the identification of differentially
expressed genes and focuses on the analysis of the ANOVA parameters, ARSyN is a preprocessing strat-
egy that renders a noise-reduced expression matrix. The processed data can then be submitted to statistical
analysis with any dedicated methodology for (M)TCM.

We have analyzed how ARSyN improves the performance of 3 time course methods: maSigPro
(Conesa and others, 2006), timecourse (Tai and Speed, 2006, 2009), and EDGE (Storey and others, 2005).
We have employed synthetic data to investigate the effects of the proposed methodology on different types
of noise and relationships between samples. Our results demonstrate that ARSyN effectively removes
structural (but not random) noise in both independent and longitudinal multifactorial data sets. Finally, we
assess the usability of the filtering approach from a biological point of view through the application to 2
experimental scenarios. Furthermore, we compare ARSyN with current batch-removal methods: ComBat
(Johnson and others, 2007) and surrogate variable analysis (SVA) (Leek and Storey, 2007).

2. MATERIAL AND METHODS

2.1 The ASCA model

Since the ARSyN approach relies on the ASCA framework, it is pertinent to present this methodology on
the first place. We will describe the general case of a multiseries TCM experiment where the experimental
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design is defined by 2 factors: the time component and the experimental groups for which temporal gene
expression differences are studied. More complex experimental designs are equally amenable to ASCA
and ARSyN analysis by taking appropriate ANOVA models. Let us consider I time points
(i = 1, . . . , I ), J experimental groups ( j = 1, . . . , J ), Ri j replications, (r = 1, . . . , Ri j ) for each case
i j , and N genes (n = 1, . . . , N ). For each gene, we will denote by xi jr the gene expression measure at
the time i, under condition j and for replicate r. The analysis of this experiment using the ASCA approach
(Smilde and others, 2005) implies the definition of the ANOVA model for each gene by

xi jr = μ + αi + β j + (αβ)i j + (αβγ )i jr , (2.1)

where μ is an offset term, αi is the model parameter for factor time on level i , β j measures the j th group
effect, (αβ)i j represents the interaction effect between the i th time and j th group, and the individual
variation is indicated by (αβγ )i jr instead of εi jr to avoid confusion with the error term in the subsequently
derived ASCA model.

We consider a microarray experiment with N genes and M = ∑
i, j Ri j samples; a matrix X of di-

mensions M × N can be defined containing the entire gene expression data set. Similarly, the estimates
of the ANOVA parameters on the right-hand side of (2.1) can be obtained for all genes and collected into
matrices where rows represent samples and columns represent genes. This gives the expression

X = 1mt + Xa + Xb + Xab + Xabg, (2.2)

where 1 is a size M column vector of ones, mt is a size N row vector containing estimates of μ for each
gene, matrices Xa , Xb, and Xab contain the estimates of parameters αi , β j , and (αβ)i j , respectively, and
Xabg contains the residuals named (αβγ )i jr .

When experimental data contains numerous variables (genes) in which correlation relationships are
present, as would normally be expected in transcriptomics, the data matrix X contains redundant infor-
mation and, subsequently, so do the matrices Xa , Xb, Xab, and Xabg . In this case, information can be
summarized by applying multivariate projection techniques that reduce data dimensionality. Given the
data decomposition obtained with the ANOVA model, it is possible that each source of variability has
different principal directions. It is therefore convenient to apply dimension reduction separately to each
one of matrices Xa , Xb, Xab, and Xabg . Consequently, the ASCA model corresponding to (2.2) gives us

X = 1mt +

PART I: Signal of interest︷ ︸︸ ︷
Xa︷ ︸︸ ︷

TaPt
a + Ea +

Xb︷ ︸︸ ︷
TbPt

b + Eb +
Xab︷ ︸︸ ︷

TabPt
ab + Eab +

PART II: Residuals︷ ︸︸ ︷
Xabg︷ ︸︸ ︷

TabgPt
abg + Eabg, (2.3)

where the component scores of each submodel are given by the matrices Ta , Tb, Tab, and Tabg; the
loadings are given by the matrices Pa , Pb, Pab, and Pabg; and the residuals of each submodel are collected
in Ea , Eb, Eab, and Eabg . The analysis of TCM data is focused on the differences between experimental
groups, which over time implies the study of this factor jointly with the interaction: Xb+ab = Xb + Xab.
In this case, we will denote as Eb+ab the residuals of this submodel. For more details about the ASCA
model, see Jansen and others (2005).

2.2 ARSyN: the filtering strategy

Equation (2.3) indicates that the ASCA model can be divided into 2 parts: one corresponding to the gene
expression signals the experiment tries to reveal (Xa , Xb, Xab) and the other corresponding to the noise
captured by the model residuals (Xabg). The PCA on these matrices further separates the correlated struc-
ture of each element of X (Tx Pt

x elements) from the unstructured variation (Ex elements). Considering
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that relevant transcriptomic signals are those shared by different genes as part of co-expression programs,
it follows that the Tx Pt

x elements of the time, group, and interaction submodels bear information of in-
terest concerning the target experimental factors, while the Ex elements collect the random noise present
within these factors. Hence, a first filtering strategy should consist of subtracting these noise elements
from the X gene expression matrix, as shown in (2.4):

X̃ = X − Ea − Eb − Eab. (2.4)

In this model, the noise embedded in the gene expression value associated to the experimental factors is
filtered out. X̃ still contains the residuals of the ANOVA model (Part II or Xabg in (2.3)). This second
component can be relatively large and will typically collect all sources of noise, random and systematic.
Random noise is required to carry out an effective inferential analysis, while structured noise, which
corresponds to batch and other systematic errors, is an unwanted feature that distorts statistical analysis.
Formally, this systematic noise can be modeled as the latent structures present in the Xabg component
of the ASCA model, which are collected by the TabgPt

abg element of the SCA of this matrix. Therefore,
by subtracting the TabgPt

abg element in (2.4), we obtain (2.5) that represents the ARSyN filtering. In this

formulation, we generate a modified data matrix ˜̃X from which both the noise of the signal (E matrices
of submodels a, b, and ab) and the signal of the noise (TabgPt

abg element of the ANOVA error) are

supposedly removed. Consequently, we suggest that ˜̃X is used instead of X as signal-enriched data for
further analysis by any statistical methodology for TCM.

˜̃X = X − Ea − Eb − Eab︸ ︷︷ ︸
Noise of the signal

− TabgPt
abg︸ ︷︷ ︸

Signal of the noise

. (2.5)

The ASCA approach requires the selection of a given number of PCs to obtain the different PCA sub-
models. The number of components chosen affects the distribution of variability between signal and noise
and, subsequently, the goodness of fit of the solution. Moreover, the magnitude of the filtering applied
depends on the correctness of this selection. There are several common methods for PC selection, for
example, analysis of the scree-plots, cross-validation, and choosing a predefined threshold of variability.
As the goal here is to select the variation of interest described by models Xa and Xb+ab and to remove
the possible structural noise included in model Xabg , different criteria are required for each part. To retain
the signal, we adopt the number of components that explain a high quantity of variation of Xa and Xb+ab

submodels, fixed at more than 75% of the variation in each case. To remove structural noise, the approach
must be different. In this case, we intend to eliminate only structural noise, whereas the previous strategy
potentially also removes random noise. If structural noise is present, this will be captured by the PCA
of Xabg and there will be a number of eigenvalues of the covariance matrix of Xabg that are noticeably
higher than the rest. Note that in the case of Xabg is only random, all these eigenvalues would be approx-
imately equal. Therefore, the criterion in this case will be the selection of components with noticeably
high eigenvalues. These eigenvalues can be identified as those that satisfy (2.6),

λk � β

∑rank(Xabg)

k=1 λk

rank(Xabg)
, β > 1. (2.6)

In this work, we have taken β = 2 (see supplementary material, available at Biostatistics online, for a
formal justification of the criterion and relevance of the number of components selection).
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2.3 Data sets

2.3.1 Simulated data. ARSyN has been evaluated in 11 different scenarios in order to resemble situa-
tions with different types and magnitude of noise. These scenarios are simulated as independent TCM
experiments (6 cases) and also longitudinal TCM experiments (5 cases). A detailed description of these
simulated data has been included in the supplementary material, available at Biostatistics online, and a
brief description in Table 1.

2.3.2 Experimental data. Two real transcriptomics examples were chosen to evaluate the biological
consistency of the proposed method. The first was the toxicogenomic study by Heijne and others (2003),
which investigates the effect of the hepatotoxicant bromobenzene in rats. This data set consists of 3 time
points (6, 12, and 48 h after administration of the drug), 5 experimental groups (1 untreated group; 1
placebo, corn oil; and 3 different doses of bromobenzene: low, medium, and high), and 2665 genes. The
second was a stress study in plants which investigates the transcriptional response to 3 different abiotic
stressors (salt, cold, and heat) in the potato using the National Science Foundation (NSF) 10k potato array
(Rensink and others, 2005). This data set has 4 series (1 control and 3 types of stress: heat, salt, and cold),
3 time points, 3 replicates per experimental condition, and 9993 genes.

2.4 The evaluation approach

The general strategy for evaluating the performance of ARSyN was to apply a statistical method for TCM
data (maSigPro, EDGE, and timecourse) to the different data sets before and after ARSyN filtering and
to compare results in terms of feature selection. The maSigPro approach (Conesa and others, 2006) is
a regression-based method that uses a polynomial model to fit gene expression dynamics and dummy
variables to differentiate between experimental groups or series. timecourse is based on the empirical
Bayes procedure to study one- and two-sample longitudinal series (Tai and Speed, 2006), and recently, the
method has been adapted to multiple conditions (Tai and Speed, 2009). Finally, EDGE (Storey and others,
2005) uses B-splines–based models to analyze both independent and longitudinal data. These methods
are described in the supplementary material, available at Biostatistics online. In the case of simulated
data, we have used sensitivity (true positives detected/real true positives) and specificity (true negatives

Table 1. Description of simulated data sets

(a) Independent data (b) Longitudinal data
Time points 3 5
Experimental groups 3 3
Total number of genes 10 000 10 000
Changing genes 410 classified in 5 patterns 500
Scenarios 6 with different quantity of structural and 5 with different types

random noise. Always a dye effect of structural noise
Structural noise Random noise Type of structural noise

Scenario 1 None Low None
Scenario 2 None High Horizontal effect: genes
Scenario 3 Low Low Vertical effect: arrays
Scenario 4 Low High Several arrays altered partially
Scenario 5 High Low Dye effect
Scenario 6 High High —
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detected/real true negatives) as measures of quality. A good selection of genes is obtained when both
measures are close to 1. In the case of experimental data, as the truly differentially expressed genes are
unknown, these metrics cannot be used. Instead, we have applied a functional enrichment (FE) analysis
(Al-Shahrour and others, 2007) to evaluate the biological consistency of the results. FE assesses whether
specific cellular functions are overrepresented within a set of significant genes and is a well-established
methodology for interpreting and evaluating transcriptomic data. Additionally, we have compared our
results to those obtained by current batch-removal methods. We have chosen ComBat (Johnson and others,
2007) and SVA (Leek and Storey, 2007) which were recently recommended by Luo and others (2010) and
Leek and others (2010), respectively. Both methods were applied to the simulated studies, and ComBat
was also applied to the toxicogenomic experimental data. ComBat could not be applied to NSF potato
stress data because it has not a defined batch effect. SVA was not applied to real data sets to simplify
results as the M(TCM) methods used in this paper cannot be directly applied with SVA.

3. RESULTS

3.1 Simulation studies

Several data sets were generated for each one of the analysis scenarios designed in each simulation study.
In order to highlight the balance between signal and noise introduced in each analysis scenario, we show in
Table 2 the amount of variation simulated and explained in each ASCA submodel. In general, we observe
that residual variation increased as higher noise was modeled. The percentage of explained variance in Xa

and Xb+ab submodels was more or less constant across scenarios, whereas the explained variance in the
Xabg submodel was strongly associated to the presence of structural noise. This result confirms the ability
of the Xabg submodel in capturing the systematic noise embedded in the data. Next, we simulated 50 data
sets for each scenario, obtained filtered data by ARSyN, and applied maSigPro and timecourse to all the
data sets. Only 10 simulations were run with EDGE as this software is only accessible from a graphical
user interface and could not be integrated in high-performing scripting pipelines. However, the stability
of the results in all cases made this simplification acceptable.

Table 2. Percentage of variation simulated, and explained with ASCA, in each submodel for different
scenarios from one of the simulated independent (a) and one of the longitudinal (b) data sets

% Variation Number of % Explained
Scenario Xa Xb+ab Xabg components Xa Xb+ab Xabg
(a) Independent data

1 33.6 39.8 26.6 1, 2, 0 89.7 89 0
2 19.4 28.2 52.3 1, 3, 0 83.5 71.7 0
3 12.3 18.9 68.8 1, 2, 1 89.7 89.9 79.8
4 10.5 18.3 71.2 1, 3, 1 83.7 79.5 57.1
5 3 7.8 89.2 1, 2, 1 89.6 83.5 92.6
6 3.3 8.6 88.1 1, 2, 1 83.7 75 86

(b) Longitudinal data
1 10.6 26.1 63.3 3, 8, 0 75.7 82.9 0
2 11 26 63 3, 8, 0 75.6 82.6 0
3 8.8 21.9 69.3 3, 8, 1 76 82.7 27
4 9.6 23.2 67.2 3, 8, 1 76 82.6 18
5 5.8 14.2 80 3, 8, 1 75.6 82.4 57.2
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Figure 1 shows the sensitivity average with the original and filtered data for each method and type
of time course data. The details of this analysis are shown in the supplementary material, available at
Biostatistics online, in terms of false positives, false negatives, sensitivity, specificity averages, and their
correspondent confidence intervals. Performance analysis indicated that specificity was high and similar
in all cases and that differences were revealed by the sensitivity indicator. We explain these differences in
detail below.

maSigPro. Performance indicators showed that, in all scenarios, the selection of genes by applying
maSigPro to the ARSyN filtered data was equal or better than that obtained by applying maSigPro to the
original data. In scenarios where no systematic noise was introduced (Scenarios 1 and 2 of independent
and longitudinal data studies), maSigPro was efficient with respect to both the original and the filtered
data, and ARSyN did not affect the good performance of the statistical method. On the other hand, in
scenarios with high structural noise, ARSyN clearly improved sensitivity, while specificity was unaffected.

timecourse. The analysis of the simulated independent data sets revealed that, in scenarios without
structural noise, performance indicators were similar with and without ARSyN filtering. In Scenarios 4
and 5, a slight improvement in sensitivity was observed when ARSyN was applied, while Scenarios 3
and 6 clearly showed the higher sensitivity of the filtered data. In contrast, no significant performance
differences between original and ARSyN data were observed when longitudinal data were analyzed by
timecourse.

EDGE. The study of the independent data with the EDGE methodology showed that the number of
false negatives was 100 in many cases. These were largely genes simulated with a pattern of parallel gene-
expression profiles among series, which are hard to detect by this method. In general, we observed that

Fig. 1. Sensitivity plot. The height of the bars represents the average sensitivity obtained in 50 simulations (10 for
EDGE) with the original and filtered data of (a) independent simulated data and (b) longitudinal simulated data.
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sensitivity of EDGE was lower than in the other 2 methods. Preprocessing of data by ARSyN improves
detection capacity in some scenarios, although sensitivity values continued to be low.

Considered as a whole, the simulation study revealed that ARSyN is an efficient preprocessing tech-
nique for improving the detection of differentially expressed genes in scenarios with high structural noise
but has no effect when noise is low. We have also demonstrated that the combination of ARSyN and
maSigPro is the analysis strategy with the best overall performance.

Comparison with other filtering techniques. ARSyN was compared to 2 other noise-removal method-
ologies: ComBat and SVA. ComBat outputs, as ARSyN, a filtered data set that can be further analyzed
by TCM methods. However, ComBat cannot be applied in situations where the batch is not identified,
which we consider a limitation with respect to ARSyN. When the batch is known (Scenarios 3–6), Com-
Bat rendered a higher number of false positives, in comparison of ARSyN, whereas the number of false
negatives slightly decreased, except in Scenarios 5 and 6 of independent data set (Supplementary Tables 4
and 5 available at Biostatistics online). In contrast, SVA performed poorer on independent data whereas
produced similar results as ComBat and ARSyN in the longitudinal study (Supplementary Table 6 avail-
able at Biostatistics online). However, a major disadvantage of SVA is that it does not give a filtered data
matrix, so TCM methods cannot be directly applied. Altogether these results point to ARSyN as a more
robust and versatile solution for noise removal than other approaches.

3.2 Toxicogenomics data set

ASCA analysis of this data set decomposed data into 3 submodels: “time,” “treatment + treatment ×
time,” and “residuals.” After component selection by ARSyN, 1, 5, and 2 components, respectively, were
retained for each submodel. This component selection explained 75% of time variation, 78% of treatment
plus interaction variation, and 48% of residual variation.

Exploratory analysis of the 2 first PCs of the original data set revealed a considerable batch effect
(Figure 2(a)) that was removed with ARSyN (Figure 2(b)). The origin of this structural bias was identified
as a dye effect since the experiment had a dye-swap design and the dye used in each array was known. This
effect can also be treated by simply centering genes with the corresponding dye average (Figure 2(c)) as in
Conesa and others (2006), where maSigPro was applied to the analysis of this data set (note that this basic
centering preprocessing is the comparing scenario in this toxicogenomics example). ComBat filtering was
also effective in removing the dye bias (Figure 2(d)). Interestingly, ComBat preprocessing resulted in very
similar PC plots as dye centering (Figure 2(c)). From this analysis, we concluded that ARSyN filtering
and also other batch-removal approaches removed the dye bias from the data and revealed the differences
between the high doses of bromobenzene and the remaining doses. Furthermore, ARSyN preprocessing
resulted in an increase of the number of genes that obtained low p-values in maSigPro and EDGE analysis
(Figure 3), which is consistent with a general removal of noise from the data. Gene selection obtained with
the different methods and comparisons are shown in the Supplementary Figure 3 available at Biostatistics
online.

Finally, we investigated the gain in biological interpretability of the filtered data by analyzing the
number and types of enriched gene ontology (GO) terms in the selected genes in comparison to those
obtained from unfiltered data. In general, the number of enriched GO terms and the size of the term
within the pool of selected genes were greater in ARSyN filtered data than without filter (Supplemen-
tary Table 7 available at Biostatistics online), indicating that the noise-removal procedure enhanced the
detection of coordinated gene sets. Furthermore, GO functions revealed by the filtered data were related
to processes of the cellular detoxification response (Heijne and others, 2003). For example, “glutathione
transferase activity” (found in maSigPro–ARSyN and EDGE–ARSyN analysis) is the major cellular ac-
tivity that targets bromobenzene for degradation, whereas “heme binding” (maSigPro–ARSyN results)
refers to redox enzymes involved in this process. Similarly, “nitric oxide signal transduction” (enriched in
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Fig. 2. PCA of (a) original data, (b) ARSyN filtered data, (c) centered data by dye, and (d) ComBat filtered data. Cy3
and Cy5 are green and red dyes. Experimental groups: untreated (UT), corn oil (CO), low (LO), medium (ME), and
high (HI) doses of bromobenzene.

timecourse–ARSyN) points to a detoxification mechanism associated to the response to xenobiotic com-
pounds (Morán and others, 2010; Farina and others, 2011). These results show the biological relevance
of the new genes uncovered by the filtering procedure. ComBat preprocessing did not add new relevant
functional conclusions to the analysis of these data.

3.3 NSF potato stress data set

The ARSyN analysis for this data set resulted in a model with 1, 3, and 2 components for submodel time,
treatment + treatment × time, and residuals, respectively. This component selection explains 100% of
time variation, 80% of treatment plus interaction variation, and 28% of residual variation. Gene selection
obtained with the different methods and comparisons are shown in the Supplementary Figure 3, available
at Biostatistics online.

When considering the functional analysis (Supplementary Table 8 available at Biostatistics online),
again, the number of enriched GO terms obtained by maSigPro and timecourse analysis was higher when
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Fig. 3. Distribution of p-values obtained by maSigPro (first step) and EDGE on the toxicogenomics data set before
and after ARSyN filtering. ARSyN filtering increases the number of genes with low p-values which is consistent with
a decrease in noise levels.

data were preprocessed by ARSyN and also the specificity of the identified functions which included
hormone “signalling cascades,” “diverse enzymatic binding activities,” and “defined metabolic functions.”
Notably, EDGE analysis on these data did not result in a relevant number of significant results, regardless
of the filtering option.

4. DISCUSSION AND CONCLUSIONS

This paper describes the methodology ARSyN that uses a model-based multivariate projection technique
such as ASCA for the removal of systematic biases in microarray data. The rational of the methodology
is the extraction of the relevant shared behavior and the identification and removal of structured noise that
cannot be associated with the experimental factors included in the design of the transcriptomics study.
This structural noise is habitually referred to as the “batch” effect. It is a result of dye, lab, experimentalist,
etc., factors and can affect the data of the related arrays both globally and locally. ASCA uses ANOVA to
identify signals associated with experimental factors and PCA to separate structured and random variation
in these signals. By removing the nonstructured part of the experimental factor signals (the noise within
the signal) and the structured variation of the ANOVA errors (the signal of the noise) from the original
data set, we create a filtered data set that is enriched in the information of interest and retains only the
random noise needed for inferential analysis. This procedure offers the advantage of not requiring previous
knowledge of the nature of the “batch effect.” Any possible structural noise is identified in the signal of
the residuals of the ASCA model.

The efficacy of this filter was analyzed in 2 simulation studies in which independent and longitudinal
data, respectively, were mimicked. The proposed ARSyN method targets the systematic noise in gene
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expression data sets, different types—systematic and random—and magnitude—high or low—of noise
were introduced into the synthetic data. Additionally, we assessed whether or not the filter was generally
valid, irrespective of the inference methodology used to identify differentially expressed genes. Therefore,
we tested the filter with 3 available methods for the analysis of TCM data that follow very different
statistical strategies: maSigPro applies polynomial regression, timecourse is based on empirical Bayes,
and EDGE uses B-splines to model the dynamics of gene expression.

The results showed that ARSyN significantly improves gene selection when a high quantity of struc-
tural noise is present and has no effect when only random noise affects the expression signals. Although
this pattern was observed with each of the 3 statistical methodologies employed, maSigPro was clearly
the method on which ARSyN had the greatest impact and which yielded the best end results. Sensitivity
improvement with timecourse and EDGE was not as pronounced as with maSigPro, and the amount of
differential expression detected when these 2 methodologies were applied to ARSyN data never reached
the sensitivity levels obtained by the maSigPro analysis. This result can be explained by the nature of
the maSigPro method, a univariate gene-by-gene regression that considers a normal distribution of the
error. Given that the ARSyN filter exploits the co-expression of genes through the PCA on the estimates
of the ANOVA parameters, the synergy with the inferential approach is likely to be maximal. However,
both timecourse and EDGE use empirical methods to determine the statistical significance of statistics,
which implies the consideration of possible structural noise in all data. On the other hand, timecourse
employs shrinking covariance estimates and therefore takes into account the relationships within expres-
sion values. In this way, these methods consider aspects that are also considered by the proposed filter,
and therefore the effect obtained is expected be of a lower magnitude than that observed with maSig-
Pro. Even so, the ARSyN filter improves the sensitivity of timecourse and EDGE in some scenarios.
We hypothesize that this is related to the more refined treatment of variation by ASCA as it imposes
an ANOVA model prior to component analysis. This decomposition allows for an experimental factor–
focused analysis of covariance that is more efficient than the design-blind analysis of correlation structures
that characterize timecourse and EDGE methods. Finally, it should be mentioned that EDGE is based on
B-splines models, which work well with series of more than 10 time points; the present study was re-
stricted to short series of 3–5 time points, which may be the reason for the poor results obtained with this
technique.

When applied to experimental data sets, preprocessing by ARSyN improved the significance of the
statistical tests, the identification of the transcriptionally regulated biological processes, and the number of
significant genes contained in selected functional categories. The better performance of the ARSyN data
in the FE analysis could not be simply the consequence of an increase in the number of genes declared
significant as this occurred with maSigPro but not with timecourse. We argue that ARSyN preprocessing,
which modifies gene expression according to the correlation structure of the data set, helps to reveal the
coordinated regulation of genes in the same functional class, thereby improving the detection of enriched
functions. Additionally, ARSyN would eliminate noisy or poorly correlated genes that reduce statistical
power of FE analysis.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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